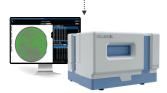
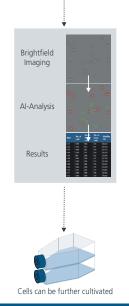
S\NENΓEC

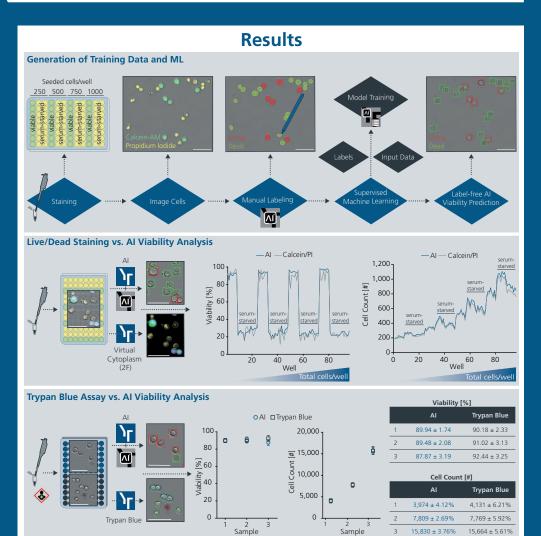
Automated Microscopy and Advanced Machine Learning Algorithm for Label-free High-Throughput Viability Analysis

Willms A¹, Davara J¹, da Graca M¹, Guledani A¹, Sebens S², Geisen R¹, Werdelmann B¹& Pirsch, M¹


¹SYNENTEC GmbH, Elmshorn, Germany; ²Institute for Experimental Cancer Research, CAU + UKSH, Kiel, Germany

Introduction


Cell viability assays are indispensable in various research areas. One of the most common standard techniques for assessing viability is Trypan Blue (TB) staining. However, TB has drawbacks: the dye exhibits cytotoxicity and is classified as carcinogenic. To overcome these obstacles, we developed an alternative solution. (1) We labeled stained suspension cells in the brightfield channel and assigned them to live or dead class using our AI-STUDIO⁺ software. (2) Advanced machine learning algorithms were trained on this data to detect cells and evaluate their viability based on morphological differences. (3) We validated the accuracy of our model by comparing its results with classical image processing of TB staining.


Multiple samples at a time

Method

Imaging with automated microscope

Benefits of SYNENTEC's AI-based Viability Assay

- Label-free, non-invasive, no interference with test compounds
- Safe, rapid, reliable, efficient, and time-and cost-effective
- Imaging and image analysis in one software platform
- Suitable for high throughput

Contact: Anna Willms, A.Willms@synentec.com Reinhild Geisen, R.Geisen@synentec.com

